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BACKGROUND: Few large multicity studies have been conducted in developing countries to address the acute health effects of atmospheric ozone
pollution.
OBJECTIVE:We explored the associations between ozone and daily cause-specific mortality in China.

METHODS: We performed a nationwide time-series analysis in 272 representative Chinese cities between 2013 and 2015. We used distributed lag
models and over-dispersed generalized linear models to estimate the cumulative effects of ozone (lagged over 0–3 d) on mortality in each city, and
we used hierarchical Bayesian models to combine the city-specific estimates. Regional, seasonal, and demographic heterogeneity were evaluated by
meta-regression.

RESULTS: At the national-average level, a 10-lg=m3 increase in 8-h maximum ozone concentration was associated with 0.24% [95% posterior interval
(PI): 0.13%, 0.35%], 0.27% (95% PI: 0.10%, 0.44%), 0.60% (95% PI: 0.08%, 1.11%), 0.24% (95% PI: 0.02%, 0.46%), and 0.29% (95% PI: 0.07%,
0.50%) higher daily mortality from all nonaccidental causes, cardiovascular diseases, hypertension, coronary diseases, and stroke, respectively.
Associations between ozone and daily mortality due to respiratory and chronic obstructive pulmonary disease specifically were positive but imprecise
and nonsignificant. There were no statistically significant differences in associations between ozone and nonaccidental mortality according to region,
season, age, sex, or educational attainment.
CONCLUSIONS: Our findings provide robust evidence of higher nonaccidental and cardiovascular mortality in association with short-term exposure to
ambient ozone in China. https://doi.org/10.1289/EHP1849

Introduction
Ambient air pollution has emerged as a major public health con-
cern worldwide (Cohen et al. 2017). As a key component of the
photochemical air pollution mixture, tropospheric ozone is
widely considered one of the most important air pollutants (Bell
et al. 2004). A large body of epidemiological studies has shown
that short-term exposure to air pollution could lead to increased
mortality and morbidity, but there is far less evidence on ozone
than on particulate matter, and the exisiting evidence is more
inconsistent (Atkinson et al. 2014; Bell et al. 2005; Dominici
et al. 2006; Pope and Dockery 2006). Interpretation of the epide-
miological evidence on ozone was also constrained by a limited
range of study sites, by variability in population susceptibility,
and by the different statistical methods used to adjust for the con-
founding effects of concomitant exposures (temperature, parti-

culate matter, etc.). Furthermore, few investigations have pro-
vided estimates on cause-specific cardiorespiratory mortality and
on the potential effect modifications (Bell and Dominici 2008;
Halonen et al. 2010).

Several large multicity studies have evaluated associations
between ozone and daily mortality in North America, Europe,
and some developed Asian cities (Bell et al. 2004, 2005;
Gryparis et al. 2004; Ng et al. 2013; Peng et al. 2013; Wong et al.
2008), but these associations have been investigated in only a
small number of cities in developing countries where ozone pol-
lution has become increasingly severe in recent years owing to
the rapid growth of urbanization (Anenberg et al. 2010; Bell et al.
2005; Chen et al. 2014; Yan et al. 2013). The lack of evidence in
developing countries was mainly driven by the scarce monitoring
data on ozone. Ozone was gradually introduced into China’s
national air quality monitoring network beginning in January
2013, and its real-time monitoring data were publicly available in
≤366 Chinese cities by the end of 2015.

We performed a nationwide study to evaluate the day-to-day
associations between ozone and cause-specific mortality at both
national and regional levels. In this study, we further evaluated
whether the associations were changed by concomitant exposure
to other air pollutants and how the associations varied by re-
gional, seasonal, and demographic characteristics.

Methods

Data Collection
This analysis was based on daily air pollutant concentrations,
weather conditions, and cause-specific mortality counts in 272
Chinese cities from 2013 to 2015, which have been described
elsewhere (Chen et al. 2017). The 272 cities were selected
because we could obtain daily data on ozone, mortality (>3) non-
accidental deaths per day on average), and weather parameters.
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They included 69 cities with 3-y data, 74 cities with 2-y data, and
129 cities with 1-y data. The cities are dispersed over all 31 pro-
vincial administrative regions and include a population of nearly
290 million, accounting for approximately 20% of the total popu-
lation of mainland China. These cities were classified into four
regions according to the common regional divisions in terms of
geography, climate, and culture in China (see Figure S1):
Northwest (n=21), North (n=107), South (n=140) and Qing-
Tibet (n=4). In brief, the Northwest region is an arid area com-
posed of plateaus, basins, deserts, and meadows; the Qing-Tibet
region overlaps the Qinghai-Tibet Plateau, the world’s highest
plateau; and the North and South regions are populous with appa-
rent differences in climatic and cultural characteristics.

The daily mortality counts for each city were obtained from
China’s Disease Surveillance Points System (DSPS), which has
been shown to have good national and provincial representative-
ness (Liu et al. 2016). The DSPS randomly selected several dis-
tricts or communities within a city. Detailed descriptions of the
sampling and development of the DSPS have been published
elsewhere (Liu et al. 2016; Yang et al. 2005). According to the
International Classification of Diseases, 10th revision (ICD-10,
WHO 2016), daily mortality counts in each city were further cate-
gorized into total nonaccidental causes (total, codes: A00–R99),
cardiovascular diseases (CVD, codes: I00–I99), hypertension
(codes: I10–I15), coronary heart disease (CHD, codes: I20–I25),
stroke (codes: I60–I69), respiratory diseases (codes: J00–J98),
and chronic obstructive pulmonary disease (COPD, codes: J41–
J44). Finally, we divided daily deaths into several strata by age
ranges (5–64 y, 65–74 y, and ≥75 y), sex, and educational attain-
ment (low: ≤9 years; high: >9 years).

Daily ozone data were derived from China’s National Urban
Air Quality Real-time Publishing Platform (http://106.37.208.
233:20035/). We calculated maximum 8-h mean concentrations
of ozone, which was typically measured from 1000 hours to 1800
hours. To allow adjustment for the simultaneous exposure to
copollutants, we also collected daily 24-h average concentrations
of particulate matter with an aerodynamic diameter ≤2:5 lm
(PM2:5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon
monoxide (CO), and nitrogen dioxide (NO2). Through 2015, a
total of 1,265 monitors were included in the present study; how-
ever, the number varied appreciably in each city, with a median
of 4 (minimum: 1, maximum: 17). To calculate daily 8-h or 24-h
mean concentrations, ≤75% of the 1-h values must have been
available on that particular day; otherwise, the entire station was
excluded. We then averaged the measurements from all valid
monitoring sites in a city. We obtained daily mean temperature
and mean relative humidity in each city from the China
Meteorological Data Sharing Service System (http://data.cma.cn/
). More information about data sources for cause-specific deaths,
air pollutants, and weather conditions is available in our previous
publication (Chen et al. 2017). Our study protocol was approved
by the Institutional Review Board at the School of Public Health,
Fudan University (No. 2014-07-0523), with a waiver of informed
consent because all data were aggregated at city level, and no sub-
jects were contacted.

Statistical Analysis
Daily mortality counts, ozone concentrations, and weather pa-
rameters were linked by date in each city. A two-stage Bayesian
hierarchical model was applied to obtain regional- and national-
average associations between ozone and cause-specific mortality
(Dominici et al. 2006).

In the first stage, the associations in each city were estimated
using over-dispersed generalized linear models (GLM). The poly-
nomial distributed lag model (PDLM) was selected a priori for

ozone in our main analyses because it can account for collinearity
between different lag days and is, in principle, more appropriate
than single-day lags and averaging-day lags for exploring the cu-
mulative health risks of an exogenous exposure (Gasparrini
2011). Linear models were used in the present analysis because
most previous studies hypothesized linear associations between
ozone and adverse health outcomes (Bell et al. 2004; Gryparis
et al. 2004; Halonen et al. 2010; Peng et al. 2013). A maximum
lag of 3 d in the PDLM (PDLM 0–3) was selected a priori in
main analyses because previous studies have reported that associ-
ations between adverse health outcomes and short-term air pollu-
tant exposures (including ozone) were limited to exposures on
the present day and the previous 3 d (Bell et al. 2004, 2005;
Samoli et al. 2009). However, we also considered other lag struc-
tures, including single-day lags [same day (lag 0) or 1, 2, or 3 d
prior (lag 1–lag 3)], exposures averaged over multiple lag days
(lag 0–1, 0–2, and 0–3), and PDLM estimates for cumulative
exposures over the same day and 3, 6, or 9 d prior (PDLM 0–3,
0–6, and 0–9, respectively).

Several covariates were incorporated in the main GLM: a) a
natural cubic spline smooth function of calendar day with 7
degrees of freedom (df) per year to exclude seasonality in mortal-
ity; b) a factor variable for “day of week” to exclude possible var-
iations of mortality within a week; c) a cross-basis function of
temperature built by the distributed lag nonlinear model (DLNM)
to control for its potentially nonlinear and lagged confounding
effects; and d) a natural smooth function with 3 df for the
present-day relative humidity. In the DLNM of temperature, a
cross-basis function was established by a natural cubic spline for
the space of temperature with three internal knots at equally
spaced temperature percentiles to account for the potentially non-
linear relationships between temperature and mortality. For the
lags, we selected a natural cubic spline with two internal knots at
equally spaced log10-values of lags (plus intercept) to allow for
more flexible lag effects at short delays (Guo et al. 2014). We
selected a cumulative lag over the same day and 13 d prior for
temperature in the DLNM (DLNM 0–13) according to previous
epidemiological studies on ozone and temperature (Chen et al.
2017, 2014; Qin et al. 2017).

In the second stage, we used Bayesian hierarchical models to
combine city-specific estimates for the associations between
ozone and cause-specific mortality at national and regional levels.
This approach has been widely used to pool risk estimates
obtained from multiple locations while accounting for within-city
statistical error and between-city variability (heterogeneity) of
the true risks (Chen et al. 2012; Dominici et al. 2006; Peng et al.
2013). We reported the posterior mean percentage change and
95% posterior interval (PI) in daily mortality in association with a
10-lg=m3 increase in ozone concentration (Dominici et al.
2006). The 95% PI is the Bayesian formulation of the 95% confi-
dence interval (CI). We also calculated I2 statistics and p-values
for the between-city heterogeneity in random-effect models.

Using the model parameters from the main analyses, we fur-
ther conducted several subgroup analyses on potential effect modi-
fication by geographical (four typical regions), seasonal (warm
period, from May through October; cool period, from November
through April), and demographic (age, sex, and education) factors.
First, we used Bayesian hierarchical models to separately estimate
the mortality effects of ozone within each subgroup (defined by
region, age, sex, or educational attainment). Next, we derived p-
values for differences among subgroups based on likelihood ratio
tests comparing the fit of a meta-regression model with the poten-
tial modifier to the simple meta-analysis model. In addition, for
cities with ≥2 years of data (n=143), we evaluated effect modifi-
cation by season (cool or warm) within each region (Northwest,
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North, or South) using a meta-regression model with season, region
(two indicator terms for North vs. Northwest and South vs.
Northwest), and season× region interaction terms. The Qing-Tibet
region was excluded from this analysis because of insufficient data.
Finally, we evaluated effect modification of the associations
between ozone and daily mortality (total nonaccidental, CVD, and
respiratory) by annual-mean daily temperatures, PM2:5 concentra-
tions, and ozone concentrations in each city using meta-regression
models.

Finally, based on the main models, we performed three sensi-
tivity analyses to assess the robustness of our estimates for the
associations between ozone and daily total mortality. First, we fit-
ted two-pollutant models with adjustment for the concomitant ex-
posure to PM2:5, SO2, NO2, and CO, which were introduced by
using the same PDLMs as those used for ozone. Second, we
controlled for confounding by temperature using alternative lag
structures, including parallel lags of temperature on the same
day and averaging lags over 1–3 d (abbreviated as “lag 0 and
1–3”), DLNM 0–3, and DLNM 0–6. Third, we changed the
degrees of freedom in the smoothness of time from 4 df to 8
df per year.

All analyses were conducted using R version 3.1.1 (R
Foundation for Statistical Computing) with the stats package for
fitting the GLM, the dlnm package for the PDLM and the DLNM,
the tlnise package for the Bayesian hierarchical model, and the
metafor package for meta-regression analyses. p-Values<0:05
were considered statistically significant in all analyses, except for
a false discovery rate (FDR) of <0:05 in correcting for multiple
testing on the between-season differences in each region.

Results

Descriptive Statistics
Table 1 summarizes the environmental and mortality data in 272
cities in China from 2013 to 2015. The annual-mean concentra-
tions of ozone varied considerably, with an average of 77 lg=m3

(ranging from 36lg=m3 to 113lg=m3) across all cities. In gen-
eral, there were appreciable variations in concentrations of ozone
and copollutants within each region and between regions (Table
1; see also Table S1). Ozone concentrations were higher during
the warm period than during the cool period at both national and
regional levels (see Table S2). There were two to three times
more deaths in the North and South regions than in the Northwest

and Qing-Tibet regions (see Table S1). On average per city, there
were 16 deaths from total causes, eight from CVD, one from
hypertension, three from CHD, four from stroke, two from respi-
ratory diseases, and two from COPD. The climatic conditions
also varied greatly in these cities.

Regression Results
Figure 1 depicts the lag structures in national-average associa-
tions between ozone and daily total mortality. For single-day
lags, the association was strongest for ozone exposure on the
same day (lag 0) and weakest for exposure three days before
death (lag 3). When exposures were lagged over multiple days,
associations were stronger for exposures during the 0–2 d and
0–3 d lag periods than for the 0–1 d lag and were similar to the
PDLM estimates for all three lag periods evaluated. Notably, the
95% PIs became much broader when the maximum lags were
extended from 4 d (as in the main model) to 7 and 10 d. Based on
the main model, we estimated that a 10-lg=m3 increase in ozone
(PDLM 0–3) was associated with a 0.24% (95% PI: 0.13, 0.35%)
increase in daily total mortality.

Table 2 presents national average estimates for the associa-
tions between ozone concentrations and cause-specific mortality
obtained using the main model. At the national level, the associa-
tion with overall CVD mortality was slightly stronger than the
association with total mortality. Associations with CHD and
stroke mortality were similar to associations with overall CVD
mortality, whereas the association with hypertension was stronger
but less precise. Estimated percentage differences in daily mortal-
ity per 10-lg=m3 increment in ozone (PDLM 0–3) were 0.27%
(95% PI: 0.10%, 0.44%) for CVD, 0.60% (95% PI: 0.08%, 1.11%)
for hypertension, 0.24% (95% PI: 0.02%, 0.46%) for CHD, and
0.29% (95% PI: 0.07%, 0.50%) for stroke. Associations with re-
spiratory and COPD mortality were slightly weaker than the
association with total mortality but were much less precise and
were not statistically significant.

There was moderate between-city heterogeneity for total mor-
tality (I2 = 32%) and CVD mortality (I2 = 32%), and the hetero-
geneity for respiratory mortality was low (I2 = 15%). Notably,
the associations between ozone and various causes of mortality in
the Northwest and Qing-Tibet regions of China were not statistically

Table 1. Summary statistics of environment and health data in 272 Chinese
cities, 2013–2015.
Variable Mean SD Min P25 P50 P75 Max

Ozone (lg=m3)
Nationwide 77 14 36 68 77 87 113
Northwest 77 17 44 68 72 93 102
North 79 13 36 72 79 88 113
South 75 13 41 67 75 85 104
Qing-Tibet 76 26 45 59 80 96 99
Daily deaths
Total 16 16 3 7 12 20 165
CVD 8 7 1 3 6 10 65
Hypertension 1 1 0 0 0 1 7
CHD 3 3 0 1 2 3 28
Stroke 4 4 0 2 3 5 33
RD 2 3 0 1 1 3 34
COPD 2 2 0 0 1 2 29
Weather conditions
Mean temperature (°C) 15 5 −0:5 12 16 18 25
Relative humidity (%) 68 10 35 61 71 77 91

Note: CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease;
CVD, cardiovascular diseases; Max, maximum; Min, minimum; P, percentile; RD, re-
spiratory disease; SD, standard deviation.

Figure 1. National-average percentage difference (posterior mean and 95%
posterior intervals) in daily total mortality per 10-lg=m3 increase in ozone
concentration in 272 Chinese cities during single-day lags (lag 0, 1, 2, 3),
multiple-day averaging lags (lag 0–1, 0–2, 0–3), and cumulative lags based
on a polynomial distributed lag model (PDLM 0–3, 0–6, 0–9). Estimates
were generated using over-dispersed generalized linear models adjusted for
calendar day [natural cubic spline with 7 degrees of freedom (df)], day of
the week, temperature (cross-basis function for temperature lagged for 0–13
d from distributed lag nonlinear model), and humidity (lag 0, natural smooth
function, 3 df) to estimate city-specific associations that were combined
using hierarchical Bayesian models.
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significant and had much broader 95% PIs than the other two
regions (Table 2); however, there were no significant differences
among regions according to the results of likelihood ratio
tests, with p-values varying from 0.29 to 0.90 by cause of mor-
tality. The meta-regression analysis showed greater effects of
daily ozone concentrations on total mortality in cities with
lower annual temperatures (p=0:02). For each 10-lg=m3 in-
crement in daily ozone concentration, a city with 10�C lower
annual-mean temperature would have an additional increase of
0.14% (95% CI: 0.02%, 0.25%) in daily total mortality.
Annual-mean PM2:5 levels did not have a significant influence
on associations between ozone and daily total mortality. For
daily CVD mortality, only annual-mean PM2:5 had a signifi-
cant effect of modification (p<0:01), with a 10-lg=m3

decrease leading to an additional increase of 0.11% (95% CI:
0.02%, 0.20%) in mortality per 10-lg=m3 increment in daily
ozone concentration. We did not conduct such an analysis for
daily respiratory mortality because it was not statistically
associated with ozone exposure.

In the meta-regression model with season, region, and the
season × region interaction term (Table 3), the associations in the
North and South regions were stronger than those in the North-
west region, but differences by region were statistically nonsigni-
ficant (p=0:12 and 0.09, respectively); although there were
somewhat stronger associations in the cool period at the national-
average level, the between-season differences were statistically
nonsignificant (p=0:13). In meta-regression models with season
for each region, there were stronger associations in the warm sea-
son in the Northwest and North regions and weaker associations
in the warm season in the South region, but all of these differences
remained statistically nonsignificant after correcting for multiple
testing (FDR from 0.08 to 0.79).

The association between ozone and total mortality also varied
with demographic characteristics (Table 4). The effect estimates
increased consecutively in the three age groups (5–64 y, 65–74 y,
and ≥75 y), but the differences were not significant based on the

likelihood ratio test (p=0:12). There were very similar estimates
in males and females. The estimated percentage difference in
total mortality with a 10-lg=m3 increase in daily ozone was
four times as high in less-educated people than in more-educated
people, although the difference was not statistically significant
(p=0:41). Patterns of association with CVD mortality according
to age, sex, and education were similar to those for total mortality,
with statistically nonsignificant differences among subgroups (see
Table S3).

In sensitivity analyses, the estimates for associations between
ozone and daily total mortality were changed little by adjustment
for concomitant exposure to PM2:5 or CO in two-pollutant mod-
els; they attenuated appreciably but remained statistically signifi-
cant after controlling for SO2 or NO2 (see Figure S2). The use of
alternative lag structures for temperature did not lead to obvi-
ously different estimates for the associations (see Figure S3). The
estimates for daily total mortality per 10-lg=m3 increase in ozone
remained stable when the degrees of freedom per year varied
from four to eight (see Figure S4).

Discussion
This multisite analysis in 272 representative Chinese cities had
the advantage of analyzing national data using the same proto-
col and avoiding potential publication bias. It also provided a
unique opportunity to explore effect modification by geograph-
ical, seasonal, and demographic characteristics. Another key
advantage of this analysis was the use of distributed lag mod-
els in cumulating the mortality effects of ozone over several
days (avoiding underestimates) as well as in controlling for the
lagged and nonlinear effects of temperature (a strong con-
founder). Our estimates were also relatively robust to adjust-
ment of concomitant exposure to copollutants (PM2:5, NO2, SO2,
and CO).

This study estimated a 0.24% increase of daily total mortality
per 10-lg=m3 increase in ozone concentration, which was gener-
ally comparable to previous findings in meta-analyses and

Table 2. National- and regional-average percentage difference (posterior means and 95% posterior intervals) in daily cause-specific mortality per 10-lg=m3

increase in ozone concentration in 272 Chinese cities.

Regions Total CVD Hypertension CHD Stroke RD COPD

Nationwide 0.24 (0.13, 0.35) 0.27 (0.10, 0.44) 0.60 (0.08, 1.11) 0.24 (0.02, 0.46) 0.29 (0.07, 0.50) 0.18 (−0:11, 0.47) 0.20 (−0:13, 0.53)
North 0.28 (0.06, 0.51) 0.26 (0.01, 0.52) 0.15 (−0:72, 1.03) 0.13 (−0:24, 0.50) 0.40 (0.09, 0.70) 0.03 (−0:56, 0.62) 0.15 (−0:51, 0.81)
South 0.24 (0.09, 0.39) 0.31 (0.09, 0.52) 0.66 (0.02, 1.30) 0.30 (0.04, 0.55) 0.25 (0.02, 0.49) 0.29 (−0:05, 0.63) 0.27 (−0:11, 0.65)
Northwest −0:24 (−1:75, 1.28) 0.36 (−1:70, 2.42) 2.11 (−2:68, 6.90) 2.40 (−2:12, 6.92) 0.50 (−1:84, 2.84) −0:02 (−3:94, 3.91) −1:24 (−5:20, 2.72)
Qing-Tibet 0.90 (−2:12, 3.93) 1.47 (−0:81, 3.74) 1.79 (−3:32, 6.90) 1.85 (−3:20, 6.90) 2.23 (−1:64, 6.10) −1:23 (−5:14, 2.68) −1:37 (−5:39, 2.65)

Note: Estimates were generated using over-dispersed generalized linear models and polynomial distributed lag model for cumulative exposures over the same day and 3 days prior,
adjusted for calendar day [natural cubic spline with 7 degrees of freedom (df)], day of the week, temperature (cross-basis function for temperature lagged for 0–13 days from distrib-
uted lag nonlinear model), and humidity (lag 0, natural smooth function, 3 df) to estimate city-specific associations that were combined using hierarchical Bayesian models. CHD, cor-
onary heart disease; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular diseases; RD, respiratory disease.

Table 3. Estimated percentage difference (posterior means and 95% posterior intervals) in daily total mortality per 10-lg=m3 increase in ozone concentration
in 143 Chinese cities with ≥2 years of data, according to region and season.

Region All-year p-Valuea Cool season Warm season p-Value FDRb

Nationwide 0.23 (0.11, 0.34) — 0.43 (0.21, 0.65) 0.20 (0.08, 0.31) 0.13c —
Northwest 0.02 (−1:88, 1.91) — −1:65 (−5:81, 2.51) 0.69 (−1:27, 2.64) 0.13b 0.19
North 0.27 (0.03, 0.51) 0.12 0.25 (−0:18, 0.68) 0.39 (0.04, 0.75) 0.79b 0.79
South 0.21 (0.07, 0.35) 0.09 0.51 (0.26, 0.76) 0.13 (−0:06, 0.33) 0.03b 0.08

Note: Analysis excludes the Qing-Tibet region because few cities had ≥2 years of data. Estimates were generated using over-dispersed generalized linear models and polynomial dis-
tributed lag model for cumulative exposures over the same day and 3 days prior, adjusted for calendar day [natural cubic spline with 7 degrees of freedom (df)], day of the week, tem-
perature (cross-basis function for temperature lagged for 0–13 days from distributed lag nonlinear model), and humidity (lag 0, natural smooth function, 3 df) to estimate city-specific
associations that were combined using hierarchical Bayesian models. —, no comparison or the reference for comparisons; FDR, false discovery rate.
ap-Values comparing effect estimates for the North and South regions to the Northwest (referent) region in meta-regression models with region, season (warm vs. cool), and
season× region interaction terms.
bFDR or p-values comparing effect estimates for the warm versus cool seasons from separate meta-regression models stratified by region, with season as the predictor.
cp-Value comparing effect estimates for the warm versus cool seasons over all cities in meta-regression models with region (two indicator terms for North vs. Northwest and South vs.
Northwest), season, and season× region interaction terms.
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multicity studies (Bell et al. 2004, 2005; Peng et al. 2013; Tao
et al. 2012; Wong et al. 2008). To allow for comparability when
diverse metrics for ozone were adopted, previous estimates
were converted based on a metric of per 10-lg=m3 increase in
maximum 8-h average concentration with a relationship of
20:15:8 for the 1-h maximum:8-h maximum:daily average. We
assumed that 1:96 lg=m3 =1 ppb to convert previous estimates
into the same metric (Thurston and Ito 2001). For example, a
recent multisite study of 21 cities in East Asia (Japan, South
Korea, mainland China, Hong Kong, and Taiwan) indicated a
0.30% increase in total mortality (Chen et al. 2014). The
Air Pollution and Health: A Combined European and North
American Approach project estimated an overall 0.20% incre-
ment in total mortality based on a collaborative data set from
125 cities, but the values differed in the United States (0.23%),
Canada (0.64%), and Europe (0.14%) (Peng et al. 2013).
Investigators reported a 0.38% increase in total mortality in a
multicity analysis (Bangkok, Hong Kong, Shanghai, and
Wuhan) in the Public Health and Air Pollution in Asia project
(Wong et al. 2008). A meta-analysis by Bell et al. (2005) sum-
marized 144 effect estimates from 39 time-series studies world-
wide and found that the estimate was 0.33% (95% CI: 0.28%,
0.60%).

We found stronger associations of ozone with CVD mor-
tality than with total mortality, consistent with findings from
most previous studies (Bell et al. 2005; Peng et al. 2013;
Wong et al. 2008). Few previous studies have evaluated
short-term associations between ozone exposure and mortal-
ity from hypertension and CHD. A previous meta-analysis
estimated a 0.86% increase in stroke mortality per 10-lg=m3

increase in ozone (Shah et al. 2015), which was considerably
higher than our corresponding estimate (0.29%). The mecha-
nisms behind the cardiovascular effects of ozone were
somewhat biologically plausible. A number of studies have
suggested appreciable changes in circulating biomarkers of
inflammation, oxidative stress, coagulation, vasoreactivity,
lipidology, and glucose metabolism after ozone exposure
(Goodman et al. 2015). However, these results lack consis-
tency and are of uncertain clinical relevance; hence, the
exact mechanisms remain to be elucidated in further investi-
gations (Goodman et al. 2015). For example, some human
studies found that short-term exposure to ozone did not
impair vascular function, elevate blood pressure, or affect
heart rate variability in either direction (Barath et al. 2013;
Hoffmann et al. 2012).

In line with many multicity studies and meta-analyses (Bell
et al. 2005; Peng et al. 2013; Wong et al. 2008), we did not
observe statistically significant associations between ozone and
respiratory mortality. In contrast, some other studies found signi-
ficant associations with respiratory mortality and morbidity (Ji
et al. 2011; Kan et al. 2008; Zmirou et al. 1998). The inconsistent
results in the respiratory system might be due to limitations of the
time-series approach, different model specifications, location-
dependent characteristics, or greater statistical uncertainty in rela-
tion to smaller numbers of respiratory deaths than CVD deaths
(particularly in warm periods, when ozone concentrations are
high).

We did not find significant effect modification by geographi-
cal region, but our ability to estimate associations for the North-
west and Qing-Tibet regions was limited by the small numbers of
cities (21 and 4, respectively) and daily deaths in these areas.
There were no significant differences according to demographic
characteristics, although estimates suggested stronger associa-
tions in the oldest age group (≥75 y) and among those with less
education. In the meta-regression analysis, we found evidence of
a stronger association between ozone and daily mortality with a
reduction in annual-mean temperature at the city level. Similarly,
data from 98 U.S. cities included in the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) indicated that the
association between ozone and mortality was strongest in the
northeast United States and stronger in association with lower
temperatures (Bell and Dominici 2008). Aging and low educa-
tional attainment have been the two most commonly reported de-
mographic characteristics to increase susceptibility to short-term
ozone exposure in previous studies (Kan et al. 2008; Bell et al.
2014).

We found some evidence of seasonal variation in associations
between ozone and daily mortality, although patterns appeared
to vary by region, and differences by season within regions did
not reach FDR significance. In the Northwest and North
regions, the association was stronger during the warm period
than during the cool period, consistent with findings from pre-
vious multicity studies in North America and western Europe
as well as from a recent study in East Asia (Bell et al. 2005;
Chen et al. 2014; Peng et al. 2013). Stronger associations dur-
ing warm seasons might be explained by the following: a)
Ozone concentrations were typically higher during the warm
period; b) there was widespread use of household heating in
northern China during the cool period, which reduced exposure
to outdoor ozone because of restricted outdoor activities and
reduced natural ventilation; and c) there were more pronounced
synergistic effects with high temperatures during the summer
(Bell and Dominici 2008; Li et al. 2017). In southern China,
however, the association between ozone and mortality was
stronger during the cool season than during the warm season,
consistent with findings from previous Chinese studies even
when extended lags of temperature were adjusted for (Chen
et al. 2017; Kan et al. 2008; Qin et al. 2017; Tao et al. 2012).
It has been suggested that this pattern might result from the
reduced use of air conditioning, and the consequent exposure to
more natural ventilation, during cool weather (Kan et al. 2008). A
stronger association between ozone and mortality during cool ver-
sus warm seasons was also reported in the U.S. NMMAPS study
(Chen et al. 2012).

Limitations should be noted when interpreting our results.
First, exposure measurement errors would be inevitable because
we used the average of measurements across various monitors in a
city as the proxy of personal exposure, but such errors have been
reported to lead to an underestimate of the effects (Zeger et al.
2000). Second, ecological bias was inherent in the time-series

Table 4. National-average percentage differences (posterior means and 95%
posterior intervals) in daily total mortality per 10-lg=m3 increase in ozone
concentration in 272 Chinese cities, classified by age, sex and educational
attainment.

Characteristic Level Estimates p-Valuea

Age 5–64 y 0.13 (−0:23, 0.48) 0.12
65–74 y 0.19 (0.03, 0.34)
≥75 y 0.42 (0.21, 0.64)

Sex Male 0.26 (0.13, 0.39) 0.75
Female 0.21 (0.05, 0.36)

Education ≤9 y 0.25 (0.14, 0.37) 0.41
>9 y 0.06 (−0:30, 0.43)

Note: Estimates were generated using over-dispersed generalized linear models and
polynomial distributed lag model for cumulative exposures over the same day and
3 days prior, adjusted for calendar day [natural cubic spline with 7 degrees of freedom
(df)], day of the week, temperature (cross-basis function for temperature lagged for
0–13 days from distributed lag nonlinear model), and humidity (lag 0, natural smooth
function, 3 df) to estimate city-specific associations that were combined using hierarchi-
cal Bayesian models.
aThe p-values were calculated by performing a likelihood ratio test between the simple
meta-analysis model (overall estimates) and a separate meta-regression model with a
categorical variable (age, sex, or education).
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studies because all analyses were conducted on an aggregate level
rather than on an individual level. Third, owing to limited avail-
ability of such data in China, we were unable to evaluate heteroge-
neity or effect modification caused by the use of air conditioning,
by income, by urbanization, by transportation use, or by time
spent outdoors or indoors.

Conclusion
In conclusion, using a large data set covering 272 cities through-
out China, we found robust evidence of higher nonaccidental and
cardiovascular mortality in association with short-term exposure
to ambient ozone. Our results support previous evidence of acute
effects of ozone on mortality in developing countries and are gen-
erally consistent with findings for populations in North America
and Europe.
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